
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Implementation of Lowest Common Ancestor to

Calculate Extreme Edge's Weight in The Path

Between Two Vertex of a Tree

Berto Richardo Togatorop - 135221181

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522118@std.stei.itb.ac.id

Abstract— In a tree, a hierarchical structure commonly used in

computer science, the Extreme edge's weight in the path between 2

arbitrary vertices can be determined. This statement gives rise to a

crucial problem with broad applications in more complex contexts.

There are various solutions to this problem, and the author will

discuss the use of Lowest Common Ancestor (LCA) as an approach

to solve this problem.

Keywords—Lowest Common Ancestor, Extreme Edge's Weight,

Tree.

I. INTRODUCTION

In computer science, trees are essential hierarchical structures

that are used extensively due to their computational and

organizational efficiency. A crucial issue in the field of tree

architectures is figuring out the weight of the minimal edge that

connects two random vertices. This challenge has broad

practical implications, as it can be applied to optimization issues

across multiple fields. For example, in supply chain logistics,

finding the path with the least amount of weight at the edge

becomes crucial to reducing costs, optimizing efficiency, and

expediting the movement of goods between distribution hubs.

Examine the difficulties presented by network optimization in

a separate but related scenario. One of the primary concerns of

any network is the effective transfer of data, and choosing the

best channel has a direct impact on overall performance. Under

such circumstances, determining the lowest edge weight

between particular vertices in a tree becomes essential to

improving network performance. Over and beyond theoretical

concerns, the solutions to these kinds of problems have practical

applicability in many other domains.

To solve this problem, the Lowest Common Ancestor (LCA)

emerges as a powerful tool. LCA provides an elegant solution to

the broader problem, offering computational efficiency and

scalability. In the subsequent sections, we will explore the

application of LCA and its role in resolving the problem of

calculating the Extreme edge's weight in the path between two

vertices within the context of a tree.

II. FUNDAMENTHAL THEOREM.

A. Graph

Graph is a data structure utilized to depict relationships

among discrete objects. In formal terms, a graph is defined by a

tuple (V, E), where V is a non-empty set of vertices, representing

vertices (or nodes), and E is a set of edges connecting pairs of

vertices.

Based on edge orientation, graphs are categorized into two

types:

1. Undirected graph

An undirected graph is characterized by edges that do not

possess directional orientation.

2. Directed graph or digraph

A directed graph (or digraph) (V , E) consists of a nonempty

set of vertices V and a set of directed edges (or arcs) E. Each

directed edge is associated with an ordered pair of vertices. The

directed edge associated with the ordered pair (u, v) is said to

start at u and end at v.

(a) Undirected Graph

(b)Directed Graph

Fig.1 Directed and undirected graph (source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/)

A graph can have weight on each edges. This type of graph

called weighted graph. The weight on each edges can represent

many things based on the need of the structure.

Fig.2 Weighted graph (source:

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

https://informatika.stei.itb.ac.id/~rinaldi.munir/)

In the realm of graphs, the terms "path" and "cycle" hold

significance. A path of length n from the initial vertex v0 to the

destination vertex vn within graph G can be defined as an

alternating sequence of vertices and edges, denoted as v0, e1,

v1, e2, v2, ..., vn-1, en, where each edge, such as e1 = (v0, v1),

e2 = (v1, v2), ..., en = (vn-1, vn), represents edges in the graph

G. On the other hand, a cycle is a specific type of path that

commences and concludes at the same vertex, forming a closed

loop within the graph and creating a continuous pattern that

returns to the initial vertex. Look at Fig. 2. The sequence a-b-c

forms a path, while a-b-e-a forms a cycle.

B. Tree

A tree is an undirected connected graph without cycles. The

formal definition can be observed in the following theorem.

Suppose G = (V, E) is a simple undirected graph with n vertices.

Then, the following statements are equivalent:

1. G is a tree.

2. Every pair of vertices in G is connected by a unique

path.

3. G is connected, and it has m = n – 1 edges.

4. G does not contain cycles, and it has m = n – 1 edges.

5. G does not contain cycles, and adding one edge to the

graph will create exactly one cycle.

6. G is connected, and all its edges are bridges.

Fig.3 Tree (source: https://informatika.stei.itb.ac.id/~rinaldi.munir/)

C. Rooted Tree

A rooted tree is characterized by designating a specific vertex

as the "root" and assigning directional edges to form a directed

graph. As a convention, due to the commencement at the root,

the directional information is typically omitted in visual

representations for simplicity.

Fig.4 Rooted Tree (source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/)

There are some terminology in Rooted Trees :

1. Child and Parent:

In the context of rooted trees, a "child" refers to a node

directly connected to another node (the parent) in the direction

away from the root.

2. Path:

A "path" in a tree signifies a sequence of nodes where each

consecutive pair is connected by an edge. The length of a path

is the number of edges it contains.

3. Sibling:

"Siblings" are nodes that share the same parent in a rooted

tree.

4. Subtree:

A "subtree" of a node includes that node and all its

descendants, forming a smaller tree within the overall tree

structure.

5. Degree:

The "degree" of a node refers to the number of subtree (or

children) it has.

6. Leaf:

A "leaf" is a node with a degree of zero, signifying that it

has no children. Leaves are often referred to as terminal nodes.

7. Internal Nodes:

"Internal nodes" are nodes with one or more children in a

rooted tree. They are not leaves, as they have descendants.

8. Level:

The "level" of a node is its distance from the root, with the

root itself considered at level 0.

9. Height:

The "height" or "depth" of a tree is the length of the longest

path from the root to a leaf. It represents the maximum level in

the tree.

D. Lowest Common Ancestor

Lowest Common Ancestor (LCA) is a fundamental

concept in graph theory, particularly applicable to rooted

trees. It refers to the node that represents the closest shared

ancestor of two given nodes in the tree structure. The LCA

provides insight into the relationship and connectivity

between nodes in a tree, aiding in various algorithms and

problem-solving scenarios.

In a rooted tree, the LCA is determined based on the paths

from the root to the respective nodes. The LCA of nodes u

and v is the deepest node that is a common ancestor of both

u and v. This concept is essential for understanding

relationships among nodes, calculating distances, and

optimizing tree-based algorithms.

Fig.5 Lowest Common Ancestor in a Tree (source :

https://www.geeksforgeeks.org/lowest-common-ancestor-binary-tree-

set-1/)

Calculating the LCA can be reached by traversing the tree

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

efficiently, and numerous algorithms have been developed for

this purpose. These algorithms ensure the effective

computation of the LCA with reasonable time complexity,

enhancing its utility as a valuable tool in solving problems

related to tree structures.

Understanding the LCA in rooted trees lays the

groundwork for resolving diverse computational challenges.

From calculating paths to manipulating subtrees and

assessing connectivity within the tree structure, the

applications of the LCA reveal its importance in unraveling

complex relationships and hierarchical arrangements inherent

in rooted trees. This paper, in particular, focuses on effective

methods for determining the Extreme edge weight between

two nodes in a tree using the LCA.

III. IMPLEMENTATION

A. Finding the LCA using binary lifting

The provided code implements the Lowest Common Ancestor

(LCA) algorithm using binary lifting for efficient retrieval of

Extreme edge weights between two nodes in a tree. These are

the key components :

1. Global Variables and Initialization:

The code initializes global variables including adjacency

list (adj), dynamic arrays (tin, tout, up, and maxL), and integer

variables (l for logarithmic height and timer for time-stamping).

2. Depth-First Search (DFS) Function:

The dfs function takes the current vertex v, its parent p, and

the maximum length from the root to the current vertex

(maxLen).It populates the tin and tout arrays with timestamps

for each vertex, and computes the binary lifting tables (up and

maxL) for LCA queries.The function then recursively calls itself

for each child vertex (u) in the adjacency list.

3. isAncestor Function:

The isAncestor function checks whether a vertex u is an

ancestor of vertex v based on their timestamps in the DFS

traversal.

4. LCA Function:

The LCA function computes the Lowest Common Ancestor

of two vertices u and v.It checks if one vertex is an ancestor of

the other and performs a binary lifting traversal to find the LCA

efficiently.

5. maxSum Function:

The maxSum function computes the maximum edge weight

between two vertices u and v through their LCA.It utilizes the

binary lifting tables to efficiently traverse the tree and calculate

the maximum edge weight.

6. Preparation Function (prep):

The prep function initializes necessary variables and arrays

based on the number of vertices (sz).

#include <bits/stdc++.h>

#include <stdio.h>

using namespace std;

const int maxN = 1e5 + 7;

// GLOBAL VARIABLE

vector<pair<int, int>> adj[maxN];

vector<int> tin, tout;

vector<vector<int>> up, maxL;

int l, timer;

void dfs(int v, int p, int maxLen)

{

 tin[v] = ++timer;

 up[v][0] = p;

 maxL[v][0] = maxLen;

 for (int i = 1; i <= l; i++)

 {

 up[v][i] = up[up[v][i - 1]][i - 1];

 maxL[v][i] = max(maxL[v][i - 1],

maxL[up[v][i - 1]][i - 1]);

 }

 for (auto u : adj[v]) // u.first = vertex

u.second = weight

 if (u.first != p)

 dfs(u.first, v, u.second);

 tout[v] = ++timer;

}

bool isAncestor(int u, int v)

{

 return tin[u] <= tin[v] && tout[u] >= tout[v];

}

int lca(int u, int v)

{

 if (isAncestor(u, v))

 return u;

 if (isAncestor(v, u))

 return v;

 for (int i = l; i >= 0; --i) // greedy

 {

 if (!isAncestor(up[u][i], v))

 u = up[u][i];

 }

 return up[u][0];

}

int maxSum(int u, int v)

{

 int LCA = lca(u, v);

 int maxLen = 0;

 for (int i = l; i >= 0; i--)

 {

 if (isAncestor(LCA, up[u][i]))

 {

 maxLen = max(maxLen, maxL[u][i]);

 u = up[u][i];

 }

 }

 for (int i = l; i >= 0; i--)

 {

 if (isAncestor(LCA, up[v][i]))

 {

 maxLen = max(maxLen, maxL[v][i]);

 v = up[v][i];

 }

 }

 return maxLen;

}

void prep(int sz)

{

 tin.resize(sz);

 tout.resize(sz);

 timer = 0;

 l = ceil(log2(sz));

 up.assign(sz, vector<int>(l + 1));

 maxL.assign(sz, vector<int>(l + 1));

}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

7. Main Function:

The main function is where we initialize the tree verticesand

add the edges to each vertices we use. After that, we perform

queries and print the result.

B. Analyzing The Code

For each node in the tree, we precompute its ancestors using

the Binary Lifting technique. Specifically, we store the ancestors

at different levels: the ancestor above the node, the ancestor two

nodes above, the ancestor four above, and so on. This

information is stored in the array up, where up[i][j] represents

the 2^j-th ancestor above node i, with i ranging from 1 to N and

j from 0 to ceil(log(N)). The use of this array enables us to

efficiently jump from any node to any ancestor above it in O(log

N) time. The computation of this array is performed through a

Depth-First Search (DFS) traversal of the tree. Additionally, for

each node, we record the time of its first visit (when discovered

during DFS) and the time when we leave it (after visiting all its

children and exiting the DFS function). This information aids in

determining, in constant time, whether a node is an ancestor of

another node. Upon receiving a query (u, v), we can quickly

check if one node is the ancestor of the other. If u is not the

ancestor of v and vice versa, we climb the ancestors of u until

we find the highest node that is not an ancestor of v. This is

achieved by iterating through the ancestors of u from

ceil(log(N)) to 0 and checking, in each iteration, whether one

node is the ancestor of the other. The LCA is then determined as

up[u][0], representing the smallest node among the ancestors of

u that is also an ancestor of v. As a result, each LCA query can

be answered in O(log N) time. This efficient approach

significantly reduces the time complexity for answering LCA

queries and enhances the overall performance of the tree

traversal algorithm.

IV. TEST CASE

To assess the effectiveness of the Lowest Common Ancestor

(LCA) implementation, we conducted several test cases on

trees of varying sizes and structures. The goal was to evaluate

the algorithm's performance in different scenarios and verify its

ability to handle diverse tree configurations.

1. Balanced Tree

In the first test case, we examined the algorithm's

performance on a balanced tree. This scenario aimed to assess

its efficiency when dealing with a tree structure where each

level has approximately the same number of nodes. The

queries involved random pairs of vertices within the tree.

Fig.6 Balanced Tree (source: writer’s archive)

In this balanced tree structure, we attempt to find the

query results for vertices 4 with 6 and also 5 with 2. It is

evident that the Lowest Common Ancestor (LCA) for 4 and 6

is 1, and the corresponding maximum edge weight is 8.

Similarly, for the vertices 5 and 2, the LCA is identified as 2,

with a maximum weight of 7 along the path. The result of the

program provide below.

Fig.7 Test Case for balanced Tree (source: writer’s archive)

2. Skewed Tree

Fig.8 Skewed Left Tree (source: writer’s archive)

int main()

{

 // Initialize the tree with 20 vertices

 prep(20);

 // Adding edges to the tree (example)

 adj[1].push_back({2, 5}); // Edge from vertex 1

to vertex 2 with weight 5

 // Perform queries

 int u, v;

 // Example Query 1

 u = 4, v = 6;

 int lcaResult = lca(u, v);

 int maxSumResult = maxSum(u, v);

 cout << "Lowest Common Ancestor of " << u << "

and " << v << ": " << lcaResult << endl;

 cout << "Maximum Edge Weight between " << u << "

and " << v << ": " << maxSumResult << endl;

 return 0;

}

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

In this skewed tree structure, we attempt to find the

query results for vertices 4 with 2 and also 4 with 6. It is evident

that the Lowest Common Ancestor (LCA) for 4 and 6 is 2, and

the corresponding maximum edge weight is 9. Similarly, for the

vertices 4 and 5, the LCA is identified as 5, with a maximum

weight of -1 along the path. The result of the program provide

below.

Fig.9 Test Case for balanced Tree (source: writer’s archive)

3. Random Tree

For the third test case, we introduced a tree with a random

structure, including a mix of balanced and skewed subtrees.

This more unpredictable scenario aimed to mimic real-world

tree structures commonly encountered in practical applications.

The LCA algorithm was subjected to diverse query scenarios

to assess its adaptability and reliability.

Fig.6 Random Tree (source: writer’s archive)

In this random tree, we want to find the query for vertices 9

with 10, vertices 3 with 7, and also 13 and 19. The result

shown in the figure below.

Fig.11 Test Case for Random Tree (source: writer’s archive)

V. CONCLUSION

In conclusion, this paper has explored the implementation of

the Lowest Common Ancestor (LCA) algorithm in the context

of a tree to efficiently calculate the extreme edge's weight along

the path between two vertices. The fundamental concepts of

trees, paths, and cycles in graph theory were introduced to

provide a comprehensive foundation for understanding the

significance of determining the minimum and maximum edge

weights.

The focus of the paper was on utilizing the LCA algorithm as

a powerful tool to address the problem of finding the lowest

common ancestor between two arbitrary vertices in a tree that

used to find the extreme weight of the edge. The algorithm's

efficiency stems from its ability to reduce the time complexity

of ancestor queries, crucial for optimizing various applications

across different domains.

Furthermore, the implementation of the LCA algorithm with

binary lifting was discussed, emphasizing its role in achieving a

time complexity of O(log n) for both building the tree and

answering queries. The binary lifting technique, along with the

Depth-First Search (DFS) traversal, contributes to the

algorithm's effectiveness in handling large trees.

V. ACKNOWLEDGMENT

The writer would like to thank all IF2120 lecturers especially

Dr. Fariska Zakhralativa Ruskanda, S.T., M.T. as lecturer in

second class of IF2120 for Discrete Mathematics, for teaching

and supporting students to write these paper. I have gained much

better understanding in graph, tree, and its application. I also

would ike to thank Dr. Ir. Rinaldi, M.T, who provided students

with plenty of resources on Discrete Mathematics at the website.

REFERENCES

[1] R. Munir, “Graf Bagian 1,” IF2120 Matematika Diskrit. Retrieved:

December 7, 2023, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-

Graf-Bagian1-2023.pdf

[2] R. Munir, “Graf Bagian 2,” IF2120 Matematika Diskrit. Retrieved:
December 7, 2023, from

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-
Graf-Bagian2-2023.pdf

[3] R. Munir, “Graf Bagian 3,” IF2120 Matematika Diskrit. Retrieved:

December 7, 2023, from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-

Graf-Bagian1-2023.pdf

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian2-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian2-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

[4] R. Munir, “Pohon Bagian 1,” IF2120 Matematika Diskrit. Retrieved:
December 7, 2023, from

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/22-

Pohon-Bag1-2023.pdf

[5] R. Munir, “Pohon Bagian 2,” IF2120 Matematika Diskrit. Retrieved:

December 7, 2023, from

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/22-
Pohon-Bag2-2023.pdf

[6] Geeks, G. F. (2021, July 16). LCA in a tree using Binary Lifting

Technique. Retrieved December 7, 2022, from
https://www.geeksforgeeks.org/lca-in-a-tree-using-binary-lifting-

technique/

[7] Michael, L., & Kapoutsis, C. (2003). Lecture notes on LCAs from a 2003
MIT Data Structures course. Course by Erik Demaine, notes written by

Loizos Michael and Christos Kapoutsis. Notes from 2007 offering of same

course, written by Alison Cichowlas.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2023

Berto Richardo Togatorop 13522118

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/22-Pohon-Bag1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/22-Pohon-Bag1-2023.pdf
https://www.geeksforgeeks.org/lca-in-a-tree-using-binary-lifting-technique/
https://www.geeksforgeeks.org/lca-in-a-tree-using-binary-lifting-technique/

